Automatic detection of hypernasal speech signals using nonlinear and entropy measurements

نویسندگان

  • Juan R. Orozco-Arroyave
  • Julián D. Arias-Londoño
  • Jesus Francisco Vargas Bonilla
  • Elmar Nöth
چکیده

Automatic hypernasality detection in children with Cleft Lip and Palate is classically performed by means of acoustic analysis; however, recent findings indicate that nonlinear dynamics features could be useful for this task. In order to continue deepening in this issue, in this paper the discriminant capability of 4 different nonlinear dynamics features along with a set of 6 entropy measurements is studied. The whole set of features is optimized using an automatic feature selection technique based on principal component analysis. The decision about the presence or absence of hypernasality is made by employing a support vector machine. The system is tested over two databases, one considers the five Spanish vowels and the words /coco/ and /gato/, and the other one considers different German words. The performance of the system is presented in terms of accuracy, sensitivity, specificity and receiver operating curves. According to the results, the accuracy of system increases when nonlinear and entropy measures are combined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

Automatic Selection of Acoustic and Non-Linear Dynamic Features in Voice Signals for Hypernasality Detection

Automatic detection of hypernasality in voices of children with Cleft Lip and Palate (CLP) is made considering two charcaterization techniques, one based on acoustic, noise and cepstral analysis and other based on nonlinear dynamic features. Besides characterization, two automatic feature selection techniques are implemented in order to find optimal sub-spaces to better discriminate between hea...

متن کامل

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

Low-frequency components analysis in running speech for the automatic detection of parkinson's disease

This paper explores the analysis of low-frequency components of continuous speech signals from people with Parkinson’s disease, in order to detect changes in the spectrum that could be associated to the presence of tremor in the speech. Different time-frequency (TF) techniques are used for the characterization of the low frequency content of the speech signals, by paying special attention on th...

متن کامل

A New Method for Detection of Backscattered Signals from Breast Cancer Tumors: Hypothesis Testing Using an Adaptive Entropy-Based Decision Function

Introduction In recent years methods based on radio frequency waves have been used for detecting breast cancer. Using theses waves leads to better results in early detection of breast cancer comparing with conventional mammography which has been used during several years. Materials and Methods In this paper, a new method is introduced for detection of backscattered signals which are received by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012